Location of Repository

Eyes Do Not Lie: Spontaneous versus Posed Smiles

By Roberto Valenti, Albert Ali Salah and Theo Gevers

Abstract

Automatic detection of spontaneous versus posed facial expressions received a lot of attention in recent years. However, almost all published work in this area use complex facial features or multiple modalities, such as head pose and body movements with facial features. Besides, the results of these studies are not given on public databases. In this paper, we focus on eyelid movements to classify spontaneous versus posed smiles and propose distance-based and angular features for eyelid movements. We assess the reliability of these features with continuous HMM, k-NN and naïve Bayes classifiers on two different public datasets. Experimentation shows that our system provides classification rates up to 91 per cent for posed smiles and up to 80 per cent for spontaneous smiles by using only eyelid movements. We additionally compare the discrimination power of movement features from different facial regions for the same task

Topics: Human Factors, Algorithms, Experimentation Keywords Facialexpression, Spontaneousversusposedsmiledetection, Eyelid movements
Year: 2011
OAI identifier: oai:CiteSeerX.psu:10.1.1.185.3964
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.science.uva.nl/rese... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.