Skip to main content
Article thumbnail
Location of Repository

ON PREDICTIVE CODING FOR ERASURE CHANNELS USING A KALMAN FRAMEWORK

By Thomas Arildsen, Manohar N. Murthi, Søren Vang Andersen and Søren Holdt Jensen

Abstract

We present a new design method for robust low-delay coding of auto-regressive (AR) sources for transmission across erasure channels. The method is based on Linear Predictive Coding (LPC) with Kalman estimation at the decoder. The method designs the encoder and decoder offline through an iterative algorithm based on minimization of the trace of the decoder state error covariance. The design method applies to stationary AR sources of any order. Simulation results show considerable performance gains, when the transmitted quantized prediction errors are subject to loss, in terms of Signal-to-Noise Ratio (SNR) compared to the same coding framework optimized for no loss. We furthermore investigate the impact on decoding performance when channel losses are correlated. We find that the method still provides substantial improvements in this case despite being designed for i.i.d. losses. 1

Year: 2011
OAI identifier: oai:CiteSeerX.psu:10.1.1.184.7943
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.eurasip.org/Proceed... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.