Location of Repository

Automatic synthesis of extended burst-mode circuits using generalized C-elements

By Kenneth Y. Yun and David L. Dill

Abstract

Abstract — We introduce a new design style called extended burst-mode. The extended burst-mode design style covers a wide spectrum of sequential circuits ranging from delay-insensitive to synchronous. We can synthesize multiple-input change asynchronous finite state machines, and many circuits that fall in the gray area (hard to classify as synchronous or asynchronous) which are difficult or impossible to synthesize automatically using existing methods. Our implementation of extended burst-mode machines uses standard CMOS logic, generates low-latency outputs, and guarantees freedom from hazards at the gate level. In Part I, we formally define the extended burst-mode specification, provide an overview of the synthesis method, and describe the hazard-free synthesis requirements for two different next-state logic synthesis methods: two-level sums-of-products implementation and generalized C-elements implementation. We also present an extension to existing theories for hazard-free combinational synthesis to handle non-monotonic input changes

Topics: Extended burst-mode, Hazardfree synthesis, Generalized C-element
Year: 1996
OAI identifier: oai:CiteSeerX.psu:10.1.1.184.3838
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://paradise.ucsd.edu/PAPER... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.