Location of Repository

Autonomic Mix-Aware Provisioning for Non-Stationary Data Center Workloads

By Rahul Singh, Upendra Sharma, Emmanuel Cecchet and Prashant Shenoy

Abstract

Online Internet applications see dynamic workloads that fluctuate over multiple time scales. This paper argues that the non-stationarity in Internet application workloads, which causes the request mix to change over time, can have a significant impact on the overall processing demands imposed on data center servers. We propose a novel mix-aware dynamic provisioning technique that handles both the non-stationarity in the workload as well as changes in request volumes when allocating server capacity in Internet data centers. Our technique employs the k-means clustering algorithm to automatically determine the workload mix and a queuing model to predict the server capacity for a given workload mix. We implement a prototype provisioning system that incorporates our technique and experimentally evaluate its efficacy on a laboratory Linux data center running the TPC-W web benchmark. Our results show that our k-means clustering technique accurately captures workload mix changes in Internet applications. We also demonstrate that mix-aware dynamic provisioning eliminates SLA violations due to under-provisioning with non-stationary web workloads, and that it offers a better resource usage by reducing over-provisioning when compared to a baseline provisioning approach that only reacts to workload volume changes. We also present a case study of our provisioning approach on Amazon’s EC2 cloud platform. 1

Year: 2011
OAI identifier: oai:CiteSeerX.psu:10.1.1.182.9393
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.cs.umass.edu/%7Elas... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.