Article thumbnail

Real-time Local GP Model Learning

By Duy Nguyen-tuong, Matthias Seeger and Jan Peters

Abstract

For many applications in robotics, accurate dynamics models are essential. However, in some applications, e.g., in model-based tracking control, precise dynamics models cannot be obtained analytically for sufficiently complex robot systems. In such cases, machine learning offers a promising alternative for approximating the robot dynamics using measured data. However, standard regression methods such as Gaussian process regression (GPR) suffer from high computational complexity which prevents their usage for large numbers of samples or online learning to date. In this paper, we propose an approximation to the standard GPR using local Gaussian processes models inspired by [1, 2]. Due to reduced computational cost, local Gaussian processes (LGP) can be applied for larger sample-sizes and online learning. Comparisons with other nonparametric regressions, e.g., standard GPR, support vector regression (SVR) and locally weighted projection regression (LWPR), show that LGP has high approximation accuracy while being sufficiently fast for real-time online learning.

Year: 2010
OAI identifier: oai:CiteSeerX.psu:10.1.1.180.4082
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.kyb.tuebingen.mpg.d... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.