Skip to main content
Article thumbnail
Location of Repository

A Neural Net-Based Approach to Software Metrics

By G. Boetticher, K. Srinivas and D. Eichmann

Abstract

Software metrics provide effective methods for characterizing software. Metrics have traditionally been composed through the definition of an equation, but this approach is limited by the fact that all the interrelationships among all the parameters be fully understood. Derivation of a polynomial providing the desired characteristics is a substantial challenge. This paper explores an alternative, neural network approach to generating metrics. Experiments performed on two widely known metrics, McCabe and Halstead, indicate that the approach is sound, thus serving as the groundwork for further exploration into the analysis and design of software metrics

Year: 1993
OAI identifier: oai:CiteSeerX.psu:10.1.1.18.9432
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://nas.cl.uh.edu/boettiche... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.