Skip to main content
Article thumbnail
Location of Repository

A three-dimensional solver of the Schrödinger equation in momentum space for the . . .

By M. G. Pala and G. Iannaccone


We propose a simple method for computing the single-particle eigenfunctions in nanostructures with three-dimensional confinement. The proposed procedure transfers the problem to the momentum space, solves an eigenvalue equation on a reduced wavevectors space and then transfers the solution back to the real space. We show that in such a way it is possible to obtain the eigenvectors and eigenvalues corresponding to lower energies with significant improvement in computing time and memory requirements with respect to numerical methods in the coordinate space. The method can be applied to structures with inhomogeneous effective mass and can easily include the full band structure. We have tested the code on typical confining potentials of nanostructures, in order to show the advantages and possible limitations of the proposed method

Year: 2002
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.