Skip to main content
Article thumbnail
Location of Repository

Hierarchical Neural Networks for Survival Analysis

By L. Ohno-machado, M.G. Walker and M. A. Musen

Abstract

Neural networks offer the potential of providing more accurate predictions of survival time than do traditional methods. Their use in medical applications has, however, been limited, especially when some data are censored or the frequency of events is low. To reduce the effect of these problems, we have developed a hierarchical architecture of neural networks that predicts survival in a stepwise manner. Predictions are made for the first time interval, then for the second interval, and so on. The system produces a survival estimate for patients at each interval, given relevant covariates, and is able to handle continuous and discrete variables, as well as censored data. We compared the hierarchical system of neural networks with a nonhierarchical system for a data set of 428 AIDS patients. The hierarchical neural-network model predicted survival more accurately than did the nonhierarchical model (although both had low sensitivity). The hierarchical model could also learn the same patterns in less than half the time that was required by the nonhierarchical model. These results suggest that the use of hierarchical systems is advantageous when censored data are present, the number of events is small, and time-dependent variables are necessary

Year: 1994
OAI identifier: oai:CiteSeerX.psu:10.1.1.18.5166
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www-smi.stanford.edu/pu... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.