Location of Repository

Spanning Trees with Many Leaves and Average Distance

By Ermelinda Delaviña and Bill Waller

Abstract

In this paper we prove several new lower bounds on the maximum number of leaves of a spanning tree of a graph related to its order, independence number, local independence number, and the maximum order of a bipartite subgraph. These new lower bounds were conjectured by the program Graffiti.pc, a variant of the program Graffiti. We use two of these results to give two partial resolutions of conjecture 747 of Graffiti (circa 1992), which states that the average distance of a graph is not more than half the maximum order of an induced bipartite subgraph. If correct, this conjecture would generalize conjecture number 2 of Graffiti, which states that the average distance is not more than the independence number. Conjecture number 2 was first proved by F. Chung. In particular, we show that the average distance is less than half the maximum order of a bipartite subgraph, plus one-half; we also show that if the local independence number is at least five, then the average distance is less than half the maximum order of a bipartite subgraph. In conclusion, we give some open problems related to average distance or the maximum number of leave

Year: 2010
OAI identifier: oai:CiteSeerX.psu:10.1.1.178.6381
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.combinatorics.org/V... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.