Article thumbnail

Building Ranked Mashups of Unstructured Sources with Uncertain Information

By Mohamed A. Soliman, Ihab F. Ilyas and Mina Saleeb


Mashups are situational applications that join multiple sources to better meet the information needs of Web users. Web sources can be huge databases behind query interfaces, which triggers the need of ranking mashup results based on some user preferences. We present MashRank, a mashup authoring and processing system building on concepts from rank-aware processing, probabilistic databases, and information extraction to enable ranked mashups of (unstructured) sources with uncertain ranking attributes. MashRank is based on new semantics, formulations and processing techniques to handle uncertain preference scores, represented as intervals enclosing possible score values. MashRank integrates information extraction with query processing by asynchronously pushing extracted data on-the-fly into pipelined rank-aware query plans, and using ranking early-out requirements to limit extraction cost. To the best of our knowledge, both the technical problems and target applications of MashRank have not been addressed before. 1

Year: 2010
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.