Article thumbnail

Separating Features from Noise with Persistence and Statistics

By Bei Wang


In this thesis, we explore techniques in statistics and persistent homology, which detect features among data sets such as graphs, triangulations and point cloud. We accompany our theorems with algorithms and experiments, to demonstrate their effectiveness in practice. We start with the derivation of graph scan statistics, a measure useful to assess the statistical significance of a subgraph in terms of edge density. We cluster graphs into densely-connected subgraphs based on this measure. We give algorithms for finding such clusterings and experiment on real-world data. We next study statistics on persistence, for piecewise-linear functions defined on the triangulations of topological spaces. We derive persistence pairing probabilities among vertices in the triangulation. We also provide upper bounds for total persistence in expectation. We continue by examining the elevation function defined on the triangulation of a surface. Its local maxima obtained by persistence pairing are useful in describing features of the triangulations of protein surfaces. We describe an algorithm to compute these local maxima, with a run-time ten-thousand times faster in practice than previous method. We connect such improvement with the total Gaussian curvature of the surfaces

Year: 2010
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.