Location of Repository

CHANNEL ESTIMATION FOR LTE UPLINK SYSTEM BY PERCEPTRON NEURAL NETWORK

By A. Omri, R. Bouallegue, R. Hamila and M. Hasna

Abstract

In this paper, a channel estimator using neural network is presented for Long Term Evolution (LTE) uplink. This paper considers multiuser SC-FDMA uplink transmissions with doubly selective channels. This channel estimation method uses knowledge of pilot channel properties to estimate the unknown channel response at non-pilot sub-carriers. First, the neural network estimator learns to adapt to the channel variations then it estimates the channel frequency response. Simulation results show that the proposed method has better performance, in terms of complexity and quality, compared to the conventional methods least square (LS), MMSE and decision feedback and it is more robust at high speed mobility

Topics: SC-OFDMA, Channel estimation, Perceptron
Year: 2010
OAI identifier: oai:CiteSeerX.psu:10.1.1.172.6147
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://airccse.org/journal/jwm... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.