Skip to main content
Article thumbnail
Location of Repository


By Nitu Kitchloo and W. Stephen Wilson


Abstract. Kriz and Hu construct a real Johnson-Wilson spectrum, ER(n), which is 2 n+2 (2 n − 1) periodic. ER(1) is just KO (2). We do two things in this paper. First, we compute the homology of the 2 n − 1 spaces ER(n) 2 n+2 k in the Omega spectrum for ER(n). It turns out the the double of these Hopf algebras gives the homology Hopf algebras for the even spaces for E(n). As a byproduct of this we get the homology of the zeroth spaces for the Omega spectrum for real complex cobordism and real Brown-Peterson cohomology. The second result is to compute the homology Hopf ring for all 48 spaces in the Omega spectrum for ER(2). This turns out to be generated by very few elements

Year: 2010
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.