Skip to main content
Article thumbnail
Location of Repository

Workload-aware query routing trees in wireless sensor networks

By Panayiotis Andreou, Demetrios Zeinalipour-yazti, Panos K. Chrysanthis and George Samaras


Continuous queries in wireless sensor networks are established on the premise of a routing tree that provides each sensor with a path over which answers can be transmitted to the query processor. We found that these structures are suboptimality constructed in predominant data acquisition systems leading to an enormous waste of energy. In this paper we present MicroPulse 1, a workload-aware optimization algorithm for query routing trees in wireless sensor networks. Our algorithm is established on profiling recent data acquisition activity and on identifying the bottlenecks using an in-network execution of the critical path method. A node S utilizes this information in order to locally derive the time instance during which it should wake up, the interval during which it should deliver its workload and the workload increase tolerance of its parent node. We additionally provide an elaborate description of energy-conscious algorithms for disseminating and maintaining the critical path cost in a distributed manner. Our trace-driven experimentation with real sensor traces from Intel Research Berkeley shows that MicroPulse can reduce the data acquisition costs by many orders.

Year: 2008
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.