Location of Repository

By 

Abstract

Growth of needle and plate shaped particles: theory for small supersaturations, maximum velocity hypothesis P. E. J. Rivera-DõÂaz-del-Castillo and H. K. D. H. Bhadeshia A solution to the diffusion controlled growth of needle and plate shaped particles is presented as their shape approaches respectively a paraboloid of revolution or a parabolic cylinder, under small supersaturation values, when capillarity and interface kinetic effects are present. The solutions show that as supersaturation decreases, the growth rate and needle tip radius approach a common value regardless of interfacial kinetics effects as capillarity is the main factor that retards particle growth. Simple asymptotic expressions are thus obtained to predict the growth rate and tip radius at low supersaturations, assuming a maximum velocity hypothesis. These represent the circumstances during solid state precipitation reactions which lead to secondary hardening in steels

Year: 2010
OAI identifier: oai:CiteSeerX.psu:10.1.1.161.2079
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.msm.cam.ac.uk/phase... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.