Skip to main content
Article thumbnail
Location of Repository

Optimal Portfolio Problem for Stochastic-Volatility, Jump-Diffusion Models with Jump-Bankruptcy Condition: Practical Theory and Computation BFS 2008 Full Paper with Corrections

By Floyd B. Hanson


This paper treats the risk-averse optimal portfolio problem with consumption in continuous time with a stochastic-volatility, jump-diffusion (SVJD) model of the underlying risky asset and the volatility. The new developments are the use of the SVJD model with double-uniform jump-amplitude distributions and time-varying market parameters for the optimal portfolio problem. Although unlimited borrowing and short-selling play an important role in pure diffusion models, it is shown that borrowing and short-selling are constrained for jump-diffusions. Finite range jump-amplitude models can allow constraints to be very large in contrast to infinite range models which severely restrict the optimal instantaneous stock-fraction to [0,1]. The reasonable constraints in the optimal stock-fraction due to jumps in the wealth argument for stochastic dynamic programming jump integrals remove a singularity in the stock-fraction due to vanishing volatility. Main modifications for the usual constant relative risk aversion (CRRA) power utility model are for handling the partial integro-differential equation (PIDE) resulting from the additional variance independent variable, instead of the ordinary integro-differential equation (OIDE) found for the pure jump-diffusion model of the wealth process. In addition to natural constraints due to jumps when enforcing the positivity of wealth condition, other constraints are considered for all practical purposes under finite market conditions. Computational, result are presented for optimal portfolio values, stock fraction and consumption policies. Also, a computationally practical solution of Heston’s (1993) square-root-diffusion model for the underlying asset variance is derived. This shows that the nonnegativity of the variance is preserved through the proper singular limit of a simple perfect-square form. An exact, nonsingular solution is found for a special combination of the Heston stochastic volatility parameters

Topics: nonnegative-variance verification. 1 Introduc
Year: 2008
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.