Comparison of a sports-hydration drink containing high amylose starch with usual hydration practice in Australian rules footballers during intense summer training


This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.Background Fluid deficits exceeding 1.6% can lead to physical and cognitive impairment in athletes. Sport drinks used by athletes are often hyper-osmolar but this is known to be suboptimal for rehydration in medical settings and does not utilize colonic absorptive capacity. Colonic absorption can be enhanced by fermentative production of short chain fatty acids (SCFA) from substrates such as high amylose maize starch (HAMS). This study therefore compared, in elite Australian Football League (AFL) players at the height of outdoor summer training, a novel dual-action sports oral rehydration strategy that contained HAMS as well as glucose, to their usual rehydration practices (Control). The primary outcome markers of hydration were hematocrit and body weight. Methods A randomized single-blind crossover study was undertaken in thirty-one AFL players; twenty-seven completed the study which was conducted on four days (two days in the Intervention arm and two in Control arm). The Intervention arm was comprised a 50-100 g evening preload of an acetylated HAMS (Ingredion Pty Ltd) followed by consumption of a specially formulated sports oral rehydration solution (SpORS) drink during intense training and recovery. Players followed their usual hydration routine in the Control arm. Quantitative assessments of body weight, hematocrit and urine specific gravity were made at three time-points on each day of training: pre-training, post-training (90 min), and at end of recovery (30–60 min later). GPS tracking monitored player exertion. Results Across the three time-points, hematocrit was significantly lower and body weight significantly higher in Intervention compared to Control arms (p < 0.02 and p = 0.001 respectively, mixed effects model). Weights were significantly heavier at all three assessment points for Intervention compared to Control arms (Δ = 0.30 ± 0.13, p = 0.02 pre-training; Δ = 0.43 ± 0.14, p = 0.002 post training; and Δ = 0.68 ± 0.14, p < 0.001 for recovery). Between the pre-training and end-of-recovery assessments, the Control arm lost 0.80 kg overall compared with 0.12 kg in the Intervention arm, an 85% lower reduction of bodyweight across the assessment period. Conclusion The combination of the significantly lower hematocrit and increased body weight in the Intervention arm represents better hydration not only at the end of training as well as following a recovery period but also at its commencement. The magnitude of the benefit seems sufficient to have an impact on performance and further studies to test this possibility are now indicated.The study was funded by Flinders Partners, which is the commercialisation arm of Flinders University of South Australia

Similar works

Full text


Flinders Academic Commons

Provided a free PDF
oaioai:dspace.flinders.edu.au:2328/38554Last time updated on 7/9/2019View original full text link

This paper was published in Flinders Academic Commons.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.