Article thumbnail

Anaerobic digestion and biogas potential: simulation of lab and industrial-scale processes

By Ihsan Hamawand and Craig Baillie

Abstract

In this study, simulation was carried out using BioWin to test the capability of the software in predicting biogas potential for two different anaerobic systems. The two scenarios included; 1) a laboratory scale batch reactor and 2) an industrial scale anaerobic continuous lagoon digester. Measured data relating to operating conditions, reactor design parameters, and chemical properties of influent wastewater were entered into BioWin. A sensitivity analysis was carried out to identify the sensitivity of the most important default parameters in the software's models. BioWin was then calibrated by matching the predicted data with measured data and used to simulate other parameters which were unmeasured or deemed uncertain. In addition, statistical analyses were carried out using evaluation indices such as coefficient of determination (R-squared), correlation coefficient (r) and its significance (P value), general standard deviation (SD) and Willmott index of agreement to evaluate the agreement between the software prediction and the measured data. The results have shown that after calibration, BioWin can be used reliably to simulating both small scale batch reactors and industrial scale digesters with an absolute relative error less than 10% and very good indexes' values. Also, by changing the default parameters in BioWin, which is a way of calibrating the models in the software as well, it may provide information about the performance of the digester. Furthermore, the results of this study showed there may be an over estimation for biogas generated from industrial scale digesters. More sophisticated analytical devices may be required for reliable measurements of biogas quality and quantity

Publisher: 'MDPI AG'
Year: 2015
DOI identifier: 10.3390/en8010454
OAI identifier: oai:eprints.usq.edu.au:26616

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.