10.1103/PhysRevLett.122.168001

Experimental Evidence of Thermal-Like Behavior in Dense Granular Suspensions

Abstract

International audienceWe experimentally investigate the statistical behavior of a model two-dimensional granular system undergoing stationary sedimentation. Buoyant cylindrical particles are rotated in a liquid-filled drum, thus confined in a harmonic centripetal potential with tunable curvature, which competes with gravity to produce various stationary states: though heterogeneous, the packing fraction of the system can be tuned from fully dispersed to crystallized as the rotation rate is increased. We show that this dynamical system is in mechanical equilibrium in the confining potential and exhibits a thermal-like behavior, where the granular pressure and the packing fraction are related through an equation of state. We obtain an expression of the equation of state allowing us to probe the nature of the hydrodynamic interactions between the particles. This description is valid in the whole range of the physical parameters we investigated and reveals a buoyant energy scale that we interpret as an effective temperature. We finally discuss the behavior of our system at high packing fractions and the relevance of the equation of state to the liquid-solid phase transition

Similar works

Full text

thumbnail-image
oai:HAL:hal-02147119v1Last time updated on 7/8/2019

This paper was published in HAL-ENS-LYON.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.