Dissolution of noble metals during oxygen evolution in acidic media


The electrochemical production of hydrogen and hydrocarbons is considered to play a decisive role in the conversion and storage of excess amounts of renewable energy. The electrocatalysis of the oxygen evolution reaction (OER), however, faces significant challenges for practical implementation of electrolyzers. In this work, a comparative study on the activity and stability of oxidized polycrystalline noble metals during the OER is presented. All studied metals exhibit transient and steady-state dissolution. Transient dissolution takes place during oxide formation and reduction. Steady-state dissolution depends on the OER mechanism on each surface: On metals such as Ru and Au, for which oxygen from the oxide participates in the OER, the Tafel slope is low and the dissolution rate is high. In contrast, on metals for which oxygen evolves directly from adsorbed water, such as Pt and presumably Pd, the Tafel slopes are high and the dissolution rates are low. This should be considered in the design of optimal OER catalysts

Similar works

This paper was published in MPG.PuRe.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.