10.1039/b703326p

Oxide thin films based on ordered arrays of 1D nanostructure. A possible approach toward bridging material gap in catalysis

Abstract

TiO2 thin films based on ordered arrays of 1D nanostructures (nanorods, nanotubes) are proposed as suitable model materials in studies for bridging material and complexity gap in catalysis. The samples were prepared by anodic oxidation of Ti foils. By changing the preparation conditions (pH, procedure of application of the potential), different types of 1D nanostructure and different characteristics of the ordered array of these 1D nanostructures could be obtained. This allows studying the effect of nanodimension and 3D nanoarchitecture on the characteristics and reactivity of these catalysts. It is also shown that TiO2 thin films characterized by a well-ordered array of titania nanorod behave as photonic materials, thus showing unique properties of light harvesting efficiency

Similar works

Full text

MPG.PuReProvided a free PDF (195.62 KB)

item_737710oai:pure.mpg.de:item_737710
Last time updated on June 15, 2019

This paper was published in MPG.PuRe.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.