Irreducibility of the Ashtekar-Isham-Lewandowski representation


Much of the work in loop quantum gravity and quantum geometry rests on a mathematically rigorous integration theory on spaces of distributional connections. Most notably, a diffeomorphism invariant representation of the algebra of basic observables of the theory, the Ashtekar-Isham-Lewandowski representation, has been constructed. Recently, several uniqueness results for this representation have been worked out. In the present article, we contribute to these efforts by showing that the AIL-representation is irreducible, provided it is viewed as the representation of a certain C*-algebra which is very similar to the Weyl algebra used in the canonical quantization of free quantum field theories

Similar works

Full text

MPG.PuReProvided a free PDF (195.62 KB)
Last time updated on June 15, 2019

This paper was published in MPG.PuRe.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.