Article thumbnail
Location of Repository

Using Information Gain to Analyze and Fine Tune the Performance of Supply Chain Trading Agents

By James Andrews, Michael Benisch, Alberto Sardinha and Norman Sadeh


was designed to explore approaches to dynamic supply chain trading. During the course of each year’s competition historical data is logged describing more than 800 games played by different agents from around the world. In this paper, we present analysis that is focused on determining which features of agent behavior, such as the average lead time requested for supplies or the average selling price offered on finished products, tend to differentiate agents that win from those that do not. We present a visual inspection of data from 16 games played in one bracket of the 2006 TAC SCM semi-final rounds. Plots of data from these games help isolate behavioral features that distinguish top performing agents in this bracket. We then introduce a metric based on information gain to provide a more complete analysis of the 80 games played in the 2006 TAC SCM quarter-final, semi-final and final rounds. The metric captures the amount of information that is gained about an agent’s performance by knowing its value for each of 20 different behavioral features. Using this metric we find that, in the final rounds of the 2006 competition, winning agents distinguished themselves by their procurement decisions, rather than their customer bidding decisions. We also discuss how we used the analysis presented in this paper to improve our entry for the 2007 competition, which was one of the six finalists that year

Topics: electronic commerce, supply chain management
Year: 2009
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.