Article thumbnail

Protonated ethanol and its neutral counterparts

By Chrysostomos Wesdemiotis, Aberra Fura and Fred W. McLafferty

Abstract

AbstractCollisionally activated dissociation and neutralization-reionization experiments reveal that protonation of ethanol leads to two distinct isomers, the classical ion CH3CH2OH+2 and the proton-bound complex C2H4…H+…OH2. The neutral counterpart of the latter is unstable, whereas that of the former can be produced in a bound state if the CH3CH2OH+2 precursor ion is formed under low ion source pressure conditions and, thus, with higher internal energies. This suggests that there are substantial differences in the geometries of CH3CH2OH+2 and the hypervalent CH3CH2OH2 ·. This provides only a partial explanation for unusual isotope effects; C2H5OD2 ·, CH3CD2OD2 ·, and CD3CH2OD2 · are substantially more stable than C2D5OD2 · and C2H5OH2 ·

Publisher: Published by Elsevier B.V.
Year: 1991
DOI identifier: 10.1016/1044-0305(91)80031-2
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • https://s3.amazonaws.com/prod-... (external link)
  • https://s3-eu-west-1.amazonaws... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.