Skip to main content
Article thumbnail
Location of Repository

Toward an Energy Function for the Contact Map Representation of Proteins

By Kibeom Park, Michele Vendruscolo and Eytan Domany


ABSTRACT We analyzed several energy functions for predicting the native state of proteins from an energy minimization procedure. We derived the parameters of a given energy function by imposing the basic requirement that the energy of the native conformation of a protein is lower than that of any conformation chosen from a set of decoys. Our work is motivated by a recent result which proved that the simple pairwise contact approximation of the energy is insufficient to satisfy simultaneously such a basic requirement for all the proteins in a database. Here, we investigate the reasons of such negative results and show how to improve the predictive power of methods based on energy minimization. We generated decoys by gapless threading, and we derive energy parameters by perceptron learning. We first considered hydrophobic contributions to the energy, defined in several ways, and showed that the additional hydrophobic terms enlarge slightly the number of proteins that can be stabilized together. Next, we performed various modifications of the pairwise energy term. We introduced (1) a distinction between inter-residue contacts on the surface and in the core of a protein and (2) a simple distance-dependent pairwise interaction in which a two-tier definition of contact replaces the original (single-tier) one. Our results suggest that a detailed treatment of the pairwise potential is likely to be more relevant than the consideration of other forces

Year: 2009
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.