Skip to main content
Article thumbnail
Location of Repository

Generalized principal component analysis (GPCA

By René Vidal, Yi Ma and Shankar Sastry


We propose an algebraic geometric approach to the problem of estimating a mixture of linear subspaces from sample data points, the so-called Generalized Principal Component Analysis (GPCA) problem. In the absence of noise, we show that GPCA is equivalent to factoring a homogeneous polynomial whose degree is the number of subspaces and whose factors (roots) represent normal vectors to each subspace. We derive a formula for the number of subspaces n and provide an analytic solution to the factorization problem using linear algebraic techniques. The solution is closed form if and only if n ≤ 4. In the presence of noise, we cast GPCA as a constrained nonlinear least squares problem and derive an optimal function from which the subspaces can be directly recovered using standard nonlinear optimization techniques. We apply GPCA to the motion segmentation problem in computer vision, i.e. the problem of estimating a mixture of motion models from 2-D imagery. 1

Year: 2003
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.