Skip to main content
Article thumbnail
Location of Repository

Downloaded from

By D Commenges

Abstract

Inference for multi-state models from interval-censored data D Commenges INSERM U330, Bordeaux, France Clinical statuses of subjects are often observed at a ´┐Żnite number of visits. This leads to interval-censored observations of times of transition from one state to another. The likelihood can still easily be written in terms of both transition probabilities and transition intensities. In homogeneous Markov models, transition probabilities can be expressed simply in terms of transition intensities, but this is not the case in more general multi-state models. In addition, inference in homogeneous Markov models is easy because these are parametric models. Non-parametric approaches to non-homogeneous Markov models may follow two paths: one is the completely non-parametric approach and can be seen as a generalisation of the Turnbull approach; the other implies a restriction to smooth intensities models. In particular, the penalized likelihood method has been applied to this problem. This paper gives a review of these topics.

Year: 2009
OAI identifier: oai:CiteSeerX.psu:10.1.1.135.7818
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://smm.sagepub.com/cgi/rep... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.