Skip to main content
Article thumbnail
Location of Repository

A UNIFIED APPROACH TO COMPUTING REAL AND COMPLEX ZEROS OF ZERO-DIMENSIONAL IDEALS

By Jean Bernard Lasserre and Monique Laurent

Abstract

Abstract. In this paper we propose a unified methodology for computing the set VK(I) of complex (K = C) or real (K = R) roots of an ideal I ⊆ R[x], assuming VK(I) is finite. We show how moment matrices, defined in terms of a given set of generators of the ideal I, can be used to (numerically) find not only the real variety VR(I), as shown in the authors ’ previous work, but also the complex variety VC(I), thus leading to a unified treatment of the algebraic and real algebraic problem. In contrast to the real algebraic version of the algorithm, the complex analogue only uses basic numerical linear algebra because it does not require positive semidefiniteness of the moment matrix and so avoids semidefinite programming techniques. The links between these algorithms and other numerical algebraic methods are outlined and their stopping criteria are related. Key words. Polynomial ideal, zero-dimensional ideal, complex roots, real roots, numerical linear algebra

Year: 2009
OAI identifier: oai:CiteSeerX.psu:10.1.1.135.4652
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://homepages.cwi.nl/~moniq... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.