Skip to main content
Article thumbnail
Location of Repository

Echo Cancellation of Voiceband Data Signals Using RLS and Stochastic-Gradient Algorithms

By Michael L. Honig

Abstract

Abstract-The convergence properties of adaptive least squares (LS) and stochastic gradient (SG) algorithms are studied in the context of echo cancellation of voiceband data signals. The algorithms considered are the SG transversal, SG lattice, LS transversal (fast Kalman), and LS lattice. It is shown that for the channel estimation problem considered here, LS algorithms converge in approximately 2N iterations where N is the order of the filter. In contrast, both SG algorithms display inferior convergence properties due to their reliance upon statistical averages. Simulations are presented to verify this result, and indicate that the fast Kalman algorithm NEAR ECHO frequently displays numerical instability which can be circumvented by HYBRID using the lattice structure. Finally, the equivalence between an LS algorithm and a fast converging modified SG algorithm which uses a maximum length input data sequence is shown. I

Year: 1985
OAI identifier: oai:CiteSeerX.psu:10.1.1.135.455
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.ece.northwestern.ed... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.