Skip to main content
Article thumbnail
Location of Repository

Learning Semantics-Preserving Distance Metrics for Clustering Graphical Data

By Aparna S. Varde and Richard D. Sisson

Abstract

In mining graphical data the default Euclidean distance is often used as a notion of similarity. However this does not adequately capture semantics in our targeted domains, having graphical representations depicting results of scientific experiments. It is seldom known a-priori what other distance metric best preserves semantics. This motivates the need to learn such a metric. A technique called LearnMet is proposed here to learn a domainspecific distance metric for graphical representations. Input to LearnMet is a training set of correct clusters of such graphs. LearnMet iteratively compares these correct clusters with those obtained from an arbitrary but fixed clustering algorithm. In the first iteration a guessed metric is used for clustering. This metric is then refined using the error between the obtained and correct clusters until the error is below a given threshold. LearnMet is evaluated rigorously in the Heat Treating domain which motivated this research. Clusters obtained using the learned metric and clusters obtained using Euclidean distance are both compared against the correct clusters over a separate test set. Our results show that the learned metric provides better clusters

Topics: I.2.6 [Artificial Intelligence, Learning – Parameter learning. General Terms Algorithms, Experimentation. Keywords Distance metric
Year: 1995
OAI identifier: oai:CiteSeerX.psu:10.1.1.135.4337
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.cs.wpi.edu/~aparna/... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.