Skip to main content
Article thumbnail
Location of Repository

Block orthogonal polynomials: I. Definitions and properties

By Jean-marie Normand


Constrained orthogonal polynomials have been recently introduced in the study of the Hohenberg-Kohn functional to provide basis functions satisfying particle number conservation for an expansion of the particle density. More generally, we define block orthogonal (BO) polynomials which are orthogonal, with respect to a first Euclidean inner product, to a given i-dimensional subspace Ei of polynomials associated with the constraints. In addition, they are mutually orthogonal with respect to a second Euclidean inner product. We recast the determination of these polynomials into a general problem of finding particular orthogonal bases in an Euclidean vector space endowed with distinct inner products. An explicit two step Gram-Schmidt orthogonalization (G-SO) process to determine these bases is given. By definition, the standard block orthogonal (SBO) polynomials are associated with a choice of Ei equal to the subspace of polynomials of degree less than i. We investigate their properties, emphasizing similarities to and differences from the standard orthogonal polynomials. Applications to classical orthogonal polynomials will be given in forthcoming papers. PACS numbers: 02.10.Ud, 02.30.Gp, 02.30.Mv, 21.60.-n, 31.15.Ew, 71.15.Mb 1

Year: 2009
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.