Skip to main content
Article thumbnail
Location of Repository

A FRISCH-NEWTON ALGORITHM FOR SPARSE QUANTILE REGRESSION

By Roger Koenker and Pin Ng

Abstract

Abstract. Recent experience has shown that interior-point methods using a log barrier approach are far superior to classical simplex methods for computing solutions to large parametric quantile regression problems. In many large empirical applications, the design matrix has a very sparse structure. A typical example is the classical fixed-effect model for panel data where the parametric dimension of the model can be quite large, but the number of non-zero elements is quite small. Adopting recent developments in sparse linear algebra we introduce a modified version of the Frisch-Newton algorithm for quantile regression described in Portnoy and Koenker (1997). The new algorithm substantially reduces the storage (memory) requirements and increases computational speed. The modified algorithm also facilitates the development of nonparametric quantile regression methods. The pseudo design matrices employed in nonparametric quantile regression smoothing are inherently sparse in both the fidelity and roughness penalty components. Exploiting the sparse structure of these problems opens up a whole range of new possibilities for multivariate smoothing on large data sets via ANOVA-type decomposition and partial linear models. 1

Year: 2009
OAI identifier: oai:CiteSeerX.psu:10.1.1.135.2195
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.econ.uiuc.edu/~roge... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.