Skip to main content
Article thumbnail
Location of Repository

EURASIP Journal on Applied Signal Processing 2004:4, 1–8 c ○ 2004 Hindawi Publishing Corporation Optimization of Color Conversion for Face Recognition

By Creed F. Jones Iii and A. Lynn Abbott


This paper concerns the conversion of color images to monochromatic form for the purpose of human face recognition. Many face recognition systems operate using monochromatic information alone even when color images are available. In such cases, simple color transformations are commonly used that are not optimal for the face recognition task. We present a framework for selecting the transformation from face imagery using one of three methods: Karhunen-Loève analysis, linear regression of color distribution, and a genetic algorithm. Experimental results are presented for both the well-known eigenface method and for extraction of Gabor-based face features to demonstrate the potential for improved overall system performance. Using a database of 280 images, our experiments using these methods resulted in performance improvements of approximately 4 % to 14%. Keywords and phrases: face recognition, color image analysis, color conversion, Karhunen-Loève analysis. 1

Year: 2003
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.