Skip to main content
Article thumbnail
Location of Repository

A combinatorial characterization of the testable graph properties: it’s all about regularity

By Noga Alon, Eldar Fischer, Ilan Newman and Asaf Shapira

Abstract

A common thread in recent results concerning the testing of dense graphs is the use of Szemerédi’s regularity lemma. In this paper we show that in some sense this is not a coincidence. Our first result is that the property defined by having any given Szemerédi-partition is testable with a constant number of queries. Our second and main result is a purely combinatorial characterization of the graph properties that are testable with a constant number of queries. This characterization (roughly) says that a graph property P can be tested with a constant number of queries if and only if testing P can be reduced to testing the property of satisfying one of finitely many Szemerédi-partitions. This means that in some sense, testing for Szemerédi-partitions is as hard as testing any testable graph property. We thus resolve one of the main open problems in the area of property-testing, which was raised in the 1996 paper of Goldreich, Goldwasser and Ron [24] that initiated the study of graph propertytesting. This characterization also gives an intuitive explanation as to what makes a graph property testable

Topics: F.2.2 [Analysis of Algorithms and Problem
Year: 2006
OAI identifier: oai:CiteSeerX.psu:10.1.1.134.8581
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.cs.haifa.ac.il/~ila... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.