Skip to main content
Article thumbnail
Location of Repository

Visual Motion Analysis by Probabilistic Propagation of Conditional Density

By Michael Acheson Isard


This thesis establishes a stochastic framework for tracking curves in visual clutter, using a Bayesian random-sampling algorithm. The approach is rooted in ideas from statistics, control theory and computer vision. The problem is to track outlines and features of foreground objects, modelled as curves, as they move in substantial clutter, and to do it at, or close to, video frame-rate. The algorithm, named Condensation, for Conditional density propagation, has recently been derived independently by several researchers, and is generating signi cant interest in the statistics and signal processing communities. This thesis contributes to the literature on Condensation-like lters by presenting some novel applications of and extensions to the basic algorithm, and contributes to the visual motion estimation literature by demonstrating high tracking performance in cluttered environments. Despite its power the Condensation algorithm has a remarkably simple form and this allows the use of non-linear motion models which combine characteristics of discrete Hidden Markov Models with the continuous Auto-Regressive Process motion models traditionally used in Kalman lters. These mixed discrete-continuous models have promising applications to the emerging eld of perception of action. This thesis also implements two algorithms to smooth the output of the Condensation lter which improves the accuracy of motion estimation in a batch-mode procedure after tracking is complete

Year: 1998
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.