Skip to main content
Article thumbnail
Location of Repository

Autonomous transfer for reinforcement learning

By Matthew E. Taylor, Gregory Kuhlmann and Peter Stone

Abstract

Recent work in transfer learning has succeeded in making reinforcement learning algorithms more efficient by incorporating knowledge from previous tasks. However, such methods typically must be provided either a full model of the tasks or an explicit relation mapping one task into the other. An autonomous agent may not have access to such high-level information, but would be able to analyze its experience to find similarities between tasks. In this paper we introduce Modeling Approximate State Transitions by Exploiting Regression (MASTER), a method for automatically learning a mapping from one task to another through an agent’s experience. We empirically demonstrate that such learned relationships can significantly improve the speed of a reinforcement learning algorithm in a series of Mountain Car tasks. Additionally, we demonstrate that our method may also assist with the difficult problem of task selection for transfer

Topics: Reinforcement Learning
Year: 2008
OAI identifier: oai:CiteSeerX.psu:10.1.1.134.7145
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.cs.utexas.edu/~mtay... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.