Skip to main content
Article thumbnail
Location of Repository

HITCHIN INTEGRABLE SYSTEMS, DEFORMATIONS OF SPECTRAL CURVES, AND KP-TYPE EQUATIONS

By Andrew R. Hodge and Motohico Mulase

Abstract

An effective family of spectral curves appearing in Hitchin fibrations is determined. Using this family the moduli spaces of stable Higgs bundles on an algebraic curve are embedded into the Sato Grassmannian. We show that the Hitchin integrable system, the natural algebraically completely integrable Hamiltonian system defined on the Higgs moduli space, coincides with the KP equations. It is shown that the Serre duality on these moduli spaces corresponds to the formal adjoint of pseudo-differential operators acting on the Grassmannian. From this fact we then identify the Hitchin integrable system on the moduli space of Sp2m-Higgs bundles in terms of a reduction of the KP equations. We also show that the dual Abelian fibration (the SYZ mirror dual) to the Sp2m-Higgs moduli space is constructed by taking the symplectic quotient of a Lie algebra action on the moduli space of GL-Higgs bundles

Year: 2009
OAI identifier: oai:CiteSeerX.psu:10.1.1.134.6205
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.math.ucdavis.edu/~m... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.