Skip to main content
Article thumbnail
Location of Repository

W.: Mining hesitation information by vague association rules

By An Lu and Wilfred Ng


Abstract. In many online shopping applications, such as Amazon and eBay, traditional Association Rule (AR) mining has limitations as it only deals with the items that are sold but ignores the items that are almost sold (for example, those items that are put into the basket but not checked out). We say that those almost sold items carry hesitation information, since customers are hesitating to buy them. The hesitation information of items is valuable knowledge for the design of good selling strategies. However, there is no conceptual model that is able to capture different statuses of hesitation information. Herein, we apply and extend vague set theory in the context of AR mining. We define the concepts of attractiveness and hesitation of an item, which represent the overall information of a customer’s intent on an item. Based on the two concepts, we propose the notion of Vague Association Rules (VARs). We devise an efficient algorithm to mine the VARs. Our experiments show that our algorithm is efficient and the VARs capture more specific and richer information than do the traditional ARs.

Year: 2007
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.