Skip to main content
Article thumbnail
Location of Repository

Modeling Online Reviews with Multi-grain Topic Models

By Ivan Titov and Ryan McDonald

Abstract

In this paper we present a novel framework for extracting the ratable aspects of objects from online user reviews. Extracting such aspects is an important challenge in automatically mining product opinions from the web and in generating opinion-based summaries of user reviews [18, 19, 7, 12, 27, 36, 21]. Our models are based on extensions to standard topic modeling methods such as LDA and PLSA to induce multi-grain topics. We argue that multi-grain models are more appropriate for our task since standard models tend to produce topics that correspond to global properties of objects (e.g., the brand of a product type) rather than the aspects of an object that tend to be rated by a user. The models we present not only extract ratable aspects, but also cluster them into coherent topics, e.g., waitress and bartender are part of the same topic staff for restaurants. This differentiates it from much of the previous work which extracts aspects through term frequency analysis with minimal clustering. We evaluate the multi-grain models both qualitatively and quantitatively to show that they improve significantly upon standard topic models

Topics: Design, experimentation
Year: 2008
OAI identifier: oai:CiteSeerX.psu:10.1.1.134.4753
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://cui.unige.ch/~titov/pap... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.