Skip to main content
Article thumbnail
Location of Repository

Identifying disordered regions in proteins from amino acid sequences

By P. Romero, Z. Obradovic, C. Kissinger, J. E. Villafranca and A. K. Dunker


A rule-based and several neural network predictors are developed for identifying disordered regions in proteins. The rule-based predictor was suitable only for very long disordered regions, whereas the neural network predictors were developed separately for short-, medium-, and long-disordered regions (S-, M-, and LDRs, respectively). The out-of-sample prediction accuracies on a residue-by-residue basis ranged from 69 to 74% for the neural network predictors when applied to the same length class, but fell to 59 to 67 % when applied to di erent length classes. Application of both the rule-based and LDR neural network predictors to large databases of protein sequences provide strong evidence that disordered regions are very common in nature. These results are consistent with our recent proposal that disordered regions are crucial for the evolution of molecular recognition.

Year: 1997
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.