Skip to main content
Article thumbnail
Location of Repository

PAPER Memory Organization for Low-Energy Processor-Based Application-Specific Systems



SUMMARY This paper presents a novel low-energy memory design technique based on variable analysis for on-chip data memory (RAM) in application-specific systems, which called VAbM technique. It targets the exploitation of both data locality and effective data width of variables to reduce energy consumed by data transfer and storage. Variables with higher access frequency and smaller effective data width are assigned into a smaller low-energy memory with fewer bit lines and word lines, placed closer the processor. Under constraints of the number of memory banks, VAbM technique use variable analysis results to perform allocating and assigning on-chip RAM into multiple banks, which have different size with different number of word lines and different number of bit lines tailored to each application requirements. Experimental results with several real embedded applications demonstrate significant energy reduction up to 64.8 % over monolithic memory, and 27.7 % compared to memory designed by memory banking technique

Topics: key words, Low Energy, Memory Organization, Variable Analysis, Application-Specific System
Year: 2008
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.