Skip to main content
Article thumbnail
Location of Repository

Separating deterministic from nondeterministic NOF multiparty communication complexity (Extended Abstract)

By Paul Beame, Matei David, Toniann Pitassi and Philipp Woelfel


We solve some fundamental problems in the number-onforehead (NOF) k-party communication model. We show that there exists a function which has at most logarithmic communication complexity for randomized protocols with a one-sided error probability of 1/3 but which has linear communication complexity for deterministic protocols. The result is true for k = n O(1) players, where n is the number of bits on each players ’ forehead. This separates the analogues of RP and P in the NOF communication model. We also show that there exists a function which has constant randomized complexity for public coin protocols but at least logarithmic complexity for private coin protocols. No larger gap between private and public coin protocols is possible. Our lower bounds are existential and we do not know of any explicit function which allows such separations. However, for the 3-player case we exhibit an explicit function which has Ω(log log n) randomized complexity for private coins but only constant complexity for public coins. It follows from our existential result that any function that is complete for the class of functions with polylogarithmic nondeterministic k-party communication complexity does not have polylogarithmic deterministic complexity. We show that the set intersection function, which is complete in the number-in-hand model, is not complete in the NOF model under cylindrical reductions

Year: 2007
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.