Skip to main content
Article thumbnail
Location of Repository

Towards a Personal Automatic Music Playlist Generation Algorithm: The Need for Contextual Information

By Gordon Reynolds, Dan Barry, Ted Burke and Eugene Coyle

Abstract

Abstract. Large music collections afford the listener flexibility in the form of choice, which enables the listener to choose the appropriate piece of music to enhance or complement their listening scenario on-demand. However, bundled with such a large music collection is the daunting task of manually searching through each entry in the collection to find the appropriate song required by the listener. This often leaves the listener frustrated when trying to select songs from a large music collection. In this paper, an overview of existing methods for automatically generating a playlist is discussed. This discussion outlines advantages and disadvantages associated with such implementations. The paper then highlights the need for contextual and environmental information, which ultimately defines the listener’s listening scenario. Environmental features, such as location, activity, temperature, lighting and weather have great potential as meta-data. Here, the key processes of a basic system are outlined, in which the extracted music features and captured contextual data are analysed to create a personalised automatic playlist generator for large music collections. 1

Year: 2008
OAI identifier: oai:CiteSeerX.psu:10.1.1.133.945
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.audioresearchgroup.... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.