Skip to main content
Article thumbnail
Location of Repository

More Efficient Algorithms for Closest String and Substring Problems

By Bin Ma and Xiaoming Sun


The closest string and substring problems find applications in PCR primer design, genetic probe design, motif finding, and antisense drug design. For their importance, the two problems have been extensively studied recently in computational biology. Unfortunately both problems are NP-complete. Researchers have developed both fixed-parameter algorithms and approximation algorithms for the two problems. In terms of fixed-parameter, when the radius d is the parameter, the best-known fixedparameter algorithm for closest string has time complexity O(ndd+1), which is still superpolynomial even if d = O(log n). In this paper we provide an O � n|Σ | O(d) � algorithm where Σ is the alphabet. This gives a polynomial time algorithm when d = O(log n) and Σ has constant size. Using the same technique, we additionally provide a more efficient subexponential time algorithm for the closest substring problem. In terms of approximation, both closest string and closest substring problems admit polynomial time approximation schemes (PTAS). The best known time complexity of the PTAS is O(n O(ɛ−2 log 1 ɛ)). In this paper we present a PTAS with time complexity O(n O(ɛ−2)). At last, we prove that a restricted version of the closest substring has the same parameterized complexity as closest substring, answering an open question in the literature

Year: 2008
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.