Article thumbnail

In situ synthesis of α–β phase heterojunction on Bi2O3 nanowires with exceptional visible-light photocatalytic performance

By Jungang Hou, Chao Yang, Zheng Wang, Weilin Zhou, Shuqiang Jiao and Hongmin Zhu

Abstract

AbstractVisible-light-responsive α–β phase heterojunction on Bi2O3 nanowire photocatalysts were prepared via a facile in situ hydrothermal process in assistance with the post-heat treatment route. The as-prepared samples were characterized by X-ray diffraction (XRD), electron microscope (EM), Brunauer–Emmett–Teller analysis (BET), X-ray photoelectron spectroscopy (XPS), and UV–vis diffuse reflectance absorption spectra (UV–vis). XRD patterns revealed that the α–β phase heterojunction over Bi2O3 composites with the monoclinic α-Bi2O3 and the tetragonal β-Bi2O3 structure were obtained and the relative ratios between α-Bi2O3 and β-Bi2O3 can readily be tailored by the control of the reaction temperature. Within the hydrothermal temperature range, the morphology of as-prepared samples transformed progressively from two-dimensional β-Bi2O3 sheets to the α-/β-Bi2O3 nanowires junction. The exceptional photocatalytic performance of α-/β-Bi2O3 heterojunction for the degradation of cationic rhodamine B and anionic methyl orange under visible-light irradiation is superior over that of β-Bi2O3 sheets, which is ascribed to the efficient charge separation and transfer across the α-β phase junction. The phase-junction approach will open new avenues for the development of efficient photocatalysts for environmental remediation and energy conversion

Publisher: The Authors. Published by Elsevier B.V.
Year: 2013
DOI identifier: 10.1016/j.apcatb.2013.05.050
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • https://s3.amazonaws.com/prod-... (external link)
  • https://s3-eu-west-1.amazonaws... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.