Article thumbnail
Location of Repository

Counting Triangles in Data Streams

By Luciana S. Buriol and et al. Gereon Frahling

Abstract

We present two space bounded random sampling algorithms that compute an approximation of the number of triangles in an undirected graph given as a stream of edges. Our first algorithm does not make any assumptions on the order of edges in the stream. It uses space that is inversely related to the ratio between the number of triangles and the number of triples with at least one edge in the induced subgraph, and constant expected update time per edge. Our second algorithm is designed for incidence streams (all edges incident to the same vertex appear consecutively). It uses space that is inversely related to the ratio between the number of triangles and length 2 paths in the graph and expected update time O(log |V |·(1+s·|V |/|E|)), where s is the space requirement of the algorithm. These results significantly improve over previous work [20, 8]. Since the space complexity depends only on the structure of the input graph and not on the number of nodes, our algorithms scale very well with increasing graph size and so they provide a basic tool to analyze the structure of large graphs. They have many applications, for example, in the discovery of Web communities, the computa

Year: 2006
OAI identifier: oai:CiteSeerX.psu:10.1.1.126.1765
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.cs.umd.edu/~samir/4... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.