Article thumbnail

Using matrix summation method for three dimensional dose calculation in brachytherapy

By Mahmoud Zibandeh-Gorji, Ali Asghar Mowlavi and Saeed Mohammadi

Abstract

AbstractAimThe purpose of this study is to calculate radiation dose around a brachytherapy source in a water phantom for different seed locations or rotation the sources by the matrix summation method.BackgroundMonte Carlo based codes like MCNP are widely used for performing radiation transport calculations and dose evaluation in brachytherapy. But for complicated situations, like using more than one source, moving or rotating the source, the routine Monte Carlo method for dose calculation needs a long time running.Materials and methodsThe MCNPX code has been used to calculate radiation dose around a 192Ir brachytherapy source and saved in a 3D matrix. Then, we used this matrix to evaluate the absorbed dose in any point due to some sources or a source which shifted or rotated in some places by the matrix summation method.ResultsThree dimensional (3D) dose results and isodose curves were presented for 192Ir source in a water cube phantom shifted for 10 steps and rotated for 45 and 90° based on the matrix summation method. Also, we applied this method for some arrays of sources.ConclusionThe matrix summation method can be used for 3D dose calculations for any brachytherapy source which has moved or rotated. This simple method is very fast compared to routine Monte Carlo based methods. In addition, it can be applied for dose optimization study

Publisher: Wielkopolskie Oncology Centre, Poland. Published by Elsevier Urban & Partner Sp. z.o.o.
Year: 2012
DOI identifier: 10.1016/j.rpor.2012.01.003
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • https://s3-eu-west-1.amazonaws... (external link)
  • https://s3.amazonaws.com/prod-... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.