CORM-3, a water soluble CO-releasing molecule, uncouples mitochondrial respiration via interaction with the phosphate carrier

Abstract

AbstractCarbon monoxide is continuously produced in small quantities in tissues and is an important signaling mediator in mammalian cells. We previously demonstrated that CO delivered to isolated rat heart mitochondria using a water-soluble CO-releasing molecule (CORM-3) is able to uncouple mitochondrial respiration. The aim of this study was to explore more in depth the mechanism(s) of this uncoupling effect. We found that acceleration of mitochondrial O2 consumption and decrease in membrane potential induced by CORM-3 were associated with an increase in mitochondrial swelling. This effect was independent of the opening of the mitochondrial transition pore as cyclosporine A was unable to prevent it. Interestingly, removal of phosphate from the incubation medium suppressed the effects mediated by CORM-3. Blockade of the dicarboxylate carrier, which exchanges dicarboxylate for phosphate, decreased the effects induced by CORM-3 while direct inhibition of the phosphate carrier with N-ethylmaleimide completely abolished the effects of CORM-3. In addition, CORM-3 was able to enhance the transport of phosphate into mitochondria as evidenced by changes in mitochondrial phosphate concentration and mitochondrial swelling that evaluates the activity of the phosphate carrier in de-energized conditions. These results indicate that CORM-3 activates the phosphate carrier leading to an increase in phosphate and proton transport inside mitochondria, both of which could contribute to the non-classical uncoupling effect mediated by CORM-3. The dicarboxylate carrier amplifies this effect by increasing intra-mitochondrial phosphate concentration

Similar works

Full text

thumbnail-image

Elsevier - Publisher Connector

redirect
Last time updated on 05/06/2019

This paper was published in Elsevier - Publisher Connector .

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.