Dynamic behavior of a weightless rod with a point mass sliding along the rod axis according to periodic law is studied. This is the pendulum with periodically varying length which is also treated as a simple model of child's swing. Asymptotic expressions for boundaries of instability domains near resonance frequencies are derived. Domains for oscillation, rotation, and oscillation-rotation motions in parameter space are found analytically and compared with numerical study. Two types of transitions to chaos of the pendulum depending on problem parameters are investigated numerically.Comment: 8 pages, 8 figure
To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.