Article thumbnail

Abstract Global abstraction-safe marshalling with hash types

By James J. Leifer, Gilles Peskine, Peter Sewell and Keith Wansbrough


Type abstraction is a key feature of ML-like languages for writing large programs. Marshalling is necessary for writing distributed programs, exchanging values via network byte-streams or persistent stores. In this paper we combine the two, developing compile-time and run-time semantics for marshalling, that guarantee abstraction-safety between separately-built programs. We obtain a namespace for abstract types that is global, i.e. meaningful between programs, by hashing module declarations. We examine the scenarios in which values of abstract types are communicated from one program to another, and ensure, by constructing hashes appropriately, that the dynamic and static notions of type equality mirror each other. We use singleton kinds to express abstraction in the static semantics; abstraction is tracked in the dynamic semantics by coloured brackets. These allow us to prove preservation, erasure, and coincidence results. We argue that our proposal is a good basis for extensions to existing ML-like languages, pragmatically straightforward for language users and for implementors

Topics: General Terms Languages, Theory, Verification Keywords programming languages, ML, type theory, abstract types, marshalling, serialisation, modules, singleton kinds, hashing, distributed
Year: 2008
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.